GMCA Annual Meeting Notes - 2025

15 Oct 25

- A. AMCA Washington Day Update Natasha Agramonte
 - a. One day of meetings
 - b. Advocacy vs lobbying
 - i. Raise awareness
 - ii. Provide information
 - iii. Not influencing vote (lobbying)
 - c. Priorities
 - i. ELC
 - ii. SMASH Act/Kay Hagan Tick Act
 - iii. Farm Bill support
 - iv. Drones
 - v. IPM
 - vi. Others
 - d. Message training
 - e. Grassroots training
 - f. Meetings & info drop off
- B. GMCA Spring Workshop Wrap-up Elmer Gray
 - a. Griffin Campus
 - b. Free workshop
 - i. 90 people registered
 - ii. 55 people attended
- C. Assessment of Ornithophilic Mosquito Attraction to Bird-Scented Baited Traps Nalany Richardson
 - a. Target mosquito Culiseta melanura
 - b. Attraction is multi-modal
 - i. Heat/moisture
 - ii. CO2
 - iii. Movement/color/contrast
 - iv. Body odor/heat
 - v. Taste
 - c. Alternative surveillance tools
 - i. Sentinel chickens
 - 1. Expensive

- 2. Animal use permits
- 3. Husbandry
- ii. Bird scented traps
 - 1. Design
 - a. 3 sets of paired traps
 - b. Baited with either pentene or bird odor attractant and CO2
 - i. Blend a whole chicken
 - ii. Blend b feather extract
 - 2. Results
 - a. Trends toward attraction to whole body odor
 - b. Still analyzing data
 - 3. Next steps
 - a. Mist net passerine birds
 - b. Collect whole body odor from birds
 - c. Analyze chemicals and use for traps
- D. History of Mosquito Control in Georgia Rosmarie Kelly
- E. Overwintering in Mosquitoes Mike Riles
 - a. Biology of mosquitoes
 - i. Eggs
 - ii. Larvae
 - iii. Pupae
 - iv. Adults
 - b. Univoltine vs multivoltine
 - c. Habitats
 - d. "Overwintering" survival mechanism
 - i. Dormancy
 - 1. Maternal pre-diapause stage
 - 2. Embryonic pre-diapause stage
 - 3. Obligate flood stage
 - 4. Obligate winter stage
 - 5. Temperature-dependent
 - ii. Quiescence an immediate response to environmental factors
 - 1. Non-seasonal
 - 2. Slowed metabolism
 - 3. Less complex than diapause
 - 4. Based on temperature and humidity
 - 5. Primarily observed in the egg stage

- iii. Diapause biologically controlled process based on environmental cues (innate)
 - 1. Species specific ecological interactions
 - 2. Biogeography
 - 3. Life history
 - 4. Physiological
 - 5. Genetically determined
 - 6. Mediated by neurohormones
 - 7. Reactivating via external cues
 - a. Photoperiod
 - b. Gradual temperature change
 - 8. 3 phases
 - a. Preparation
 - b. Development interruption
 - c. Complete reactivation
 - 9. Progressive
- e. Cues for overwintering
 - i. Length of day
 - ii. Temperature
 - iii. Hormonal & physiological
- F. Pesticide Resistance & Testing Methods Katie Williams
 - a. Pesticide classes & modes of action
 - b. Larvicides (resistance can be found in products with residuality
 - i. Bacterial very target specific
 - 1. Bti no resistance
 - 2. Bs resistance can occur
 - ii. JH can develop resistance
 - iii. Spinosads can develop resistance
 - c. Adulticides
 - i. Heritable change in sensitivity of a pest population
 - ii. Selection of resistance genes by continuous use of the same product
 - d. Types
 - i. Behavioral
 - ii. Penetration
 - e. 3 chemical modes of action in adulticides
 - i. Pyrethroids
 - ii. Organophosphate
 - iii. Avermectins

- f. Monitoring insecticide resistance
 - i. Bioassays do not correlate with operational control
 - ii. Testing looking for mutation
 - iii. Field trials
- g. Using the data
 - i. Rotate modes of action
 - ii. Emphasize other control methods
 - iii. Change decision points to reduce pesticide use
- G. Responding to Locally Acquired Malaria: A Mosquito Population Surveillance Perspective
 - Natalie Barber
 - a. Mid-May to mid-June
 - b. 7 local cases of malaria
 - c. Anopheles crucians
 - i. 173 tested
 - ii. 85 came back positive for *Plasmodium vivax*
 - d. Found very few Anopheles quadrimaculatus
 - e. Malaria parasites found in midgut
 - f. Public communication is important but needs to be controlled
 - g. Interdepartmental communication is equally important
- H. Avoiding the Reappearance of New World Screwworms in the Southeast Nancy Hinkle
 - a. Screwworms pushed south to Panama where they strayed for 40 years using sterile male technique
 - b. Larvae eat living tissue
 - c. Devastating effect on wild animals
 - d. Egg to adult in a week to 10 days
 - e. Sterile male technique
 - i. Males sterilized using radiation
 - ii. Millions of sterilized males release by air
 - 1. Eradicated in southeast between 1957-1959
 - 2. Southwest 1962-1966
 - 3. Mexico by 1981
 - 4. Got to Panama by 1997-2001
 - f. What happened? Politics
 - g. Local issues
 - i. 2016 Florida Keys
 - 1. Outbreak in Florida key deer (endangered species)
 - 2. First time in 30 years screwworms were found in the US
 - 3. Used an insecticide application bait station to treat deer

- ii. Texas, 1970s
 - 1. Cost to cattleman in excess of \$300 million per year
 - 2. Georgia deer population would be heavily impacted
- iii. 2025, Maryland screwworms in travelers
- h. Antibiotics have no effect on screwworm larvae
- i. Pesticides are not the solution
- j. Sterile insect technique works
- k. Can be treated using ivermectine

16 Oct 25

- A. Emerging Tick-Borne Viruses Arabella Terpin-Lewis
 - a. TBDs have more than doubled in the past 13 years
 - b. 13 newly discovered tick pathogens in the western hemisphere
 - c. Viruses
 - i. Heartland
 - 1. Bandavirus
 - 2. Lone star ticks
 - 3. Discovered in Georgia in 2009
 - ii. Bourbon virus
 - 1. Togovirus
 - 2. Lone star ticks
 - 3. Not reported in Georgia...yet
 - d. Lone star ticks
 - i. Most common tick found attached to humans in Georgia
 - ii. Active questers
 - iii. 3 host tick
 - iv. Heavily vegetated undergrowth
 - e. Objectives
 - i. Understand HRTV phylodynamices
 - ii. Detect other viruses that may be present
 - iii. Study sites
 - 1. Chattahoochee Bend State Park (HRTV found)
 - 2. Privately owned isolated strip of land (HRTV found)
 - 3. Piedmont National Wildlife Refuge
 - 4. Buck Shoals (ALT found)

- f. Methods
 - i. Collect by flagging
 - ii. Wash off environmental contaminants
 - iii. ID, sort, pool
 - iv. Grind up ticks
 - v. Test using RT-PCR
- g. Results
 - i. Bourbon virus found in privately owned strip of land in 2025
 - ii. Found in larvae
 - iii. Found in same geographic area
- h. Future plans
 - i. Blood meal analysis
 - ii. Phylogenetic analysis
- B. Fulton County Mosquito Control Overview Caroline Efstathion
 - a. Manager Jennifer Riley
 - b. VDCI (Rentokil/Terminix)
 - i. Works with BOH
 - ii. Larvicide distribution
 - iii. Mosquito surveillance and testing
 - iv. Mosquito control in response to positive mosquito pools
 - c. Testing lab Louisiana Animal Disease Diagnostic Lab
 - d. Fulton County Response
 - i. Catch basin
 - 1. Treatment with altosid xr
 - 2. 1400 catch basins treated in July
 - ii. Developed informational packets in collaboration with the BOH
 - 1. Signs
 - 2. Door hangers
 - 3. QR Codes
 - 4. Door-to-door
 - iii. Media events
 - iv. Inspection & surveillance
 - 1. Larval and adult
 - a. 26 locations
 - i. Gravid traps
 - ii. CDC traps
 - b. Landing rates
 - 2. Service requests

- a. Inspection
- b. Documentation
- c. Reported to BOH
- v. Adult control in response to positive mosquito pools
 - 1. Notify Dr Leftwich
 - 2. Handed out pamphlets
 - 3. Truck spray 2 consecutive nights with pyrethroids
 - 4. Larvicide standing water
 - 5. Surveillance and testing
- C. Uncovering Interactions Between Invasive Wild Pigs and Vector Mosquitoes and Their Synergistic Threats to Humans and Other Animal Health Mary Beard
 - a. Wild pigs (Sus scrofa)
 - i. Introduced in the 1500s
 - ii. Disruptive and invasive
 - iii. Pathogen reservoirs
 - 1. Japanese encephalitis virus
 - a. Potential economic loss
 - b. \$300 \$600 million per year
 - 2. Other zoonotic viruses
 - iv. Wallowing behavior
 - b. Wallows are mosquito habitats
 - i. Pigs supply blood meal
 - ii. Pigs are amplifiers for mosquito-borne viruses
 - c. Critical impacts can occur
 - i. Feral pigs
 - ii. Culex quinquefasciatus
 - iii. Bird malaria
 - iv. Decline of native honey creepers in Hawaii
 - d. Mosquitoes of interest
 - i. Anopheles spp
 - ii. Culex spp
 - e. Goals
 - i. Mosquitoes using wallows
 - ii. Blood meal analysis
 - iii. Viruses in system
 - f. Methods
 - i. Sites
 - 1. Pig barn

- 2. Wallows
- ii. Collection
 - 1. CDC light traps
 - 2. Larval dippers
 - 3. Plan to add aspirators to collect adults
- iii. Blood analysis
- iv. RT-PCR for viruses
- v. Concerns
 - 1. Spill over from feral pigs to domestic pigs
 - 2. Spill over into people
 - 3. Environmental destruction (\$150,000 per year in damages)
 - 4. Viral spread to other animals
- D. Georgia Vector Surveillance State Report, 2025 Tiffany Nguyen
 - a. Weird weather in 2025
 - b. 10 counties testing mosquitoes with 5 reporting positives
 - c. EEE in Fulton County
 - d. Pesticide resistance testing is currently minimal due to funding shortfalls
 - i. Developing pyrethroids resistance
 - ii. Malathion and fenthion still working
 - e. Tick surveillance
 - i. Collaborative
 - ii. Relies on interns
 - iii. Summaries available
 - f. MAMCA student scholarships
- E. Assessing Behavioral Resistance to Targeted Insecticide Spraying in Acapulco in Mexico David C Jimenez-Vallejo
 - a. History
 - i. 1940s DDT resting habits critical to control
 - ii. Persistence led to resistance
 - b. Daily activity
 - i. Resting
 - ii. Early host-seeking
 - iii. Blood feeding
 - iv. Digestion
 - c. Key determinant of physiology and survival
 - d. Resting vs active stages
 - e. Mosquitoes often rest closer to the ground
 - f. Can be strain difference

- g. Selective spraying
 - i. Indoor application of pesticides
 - ii. Spraying lower in the room increases control
- h. Yucatán trial
 - i. 50 clusters located in dengue area
 - ii. 25 TIRs and 25 controls
 - iii. Run for 3 years
- i. Resistance testing
 - i. How does behavioral resistance occur?
 - 1. Plasticity
 - 2. Short term change
 - 3. Genetic
 - ii. Selective force changed in the houses, leaving unexposed areas higher up
 - iii. If resting behavior traits are heritable, using TIRS may be in jeopardy
- j. Hypothesis
 - i. Behavioral resistance can develop in TIRS situation
 - ii. Stratified collections
 - iii. Random sample of 10% of houses
 - iv. Collected in both control and treatment houses 2, 4, and 6 months after treatment
- k. Results
 - i. No significant difference in location of resting after spraying
 - ii. Variation across clusters
 - iii. No difference between control or treatment
 - iv. Seeing a reduction in mosquito numbers
- I. Conclusion
 - i. Reject the null hypothesis
 - ii. Why?
 - 1. Resting behavior traits not heritable
 - 2. Not enough time for change
 - 3. Change may be to resting outdoors instead of resting higher
 - 4. Other resistance mechanisms might be favored

F. INDUSTRY SPOTLIGHT

- a. AMVAC Derek Wright
 - i. AMGUARD specialty group
 - ii. Registrant, manufacturer/formulation, and steward of the products
 - iii. Products
 - 1. Web sites kept up-to-date and accurate

- 2. All public health products
 - a. Avesta
 - b. Dibrom
 - c. Nuvan pro strips
 - d. Summit Bti
 - e. Trumpet
- 3. Lots of data on website on efficacy testing
- iv. Https://mosquitocontrolfacts.com
- v. Modeling refinements for ULV spraying
- vi. Closed system drum handling
- vii. Drum return program
- viii. Applicator spotlights
- b. Clarke Sydney Brogden (she is leaving the industry and will be missed)
 - i. Call 800 number after Nov 14
 - ii. Manager is aware of customer base
- G. From Air to Ground: Aerial Application in IMM Kevin Card
 - a. Very challenging
 - b. Role of aerial application in IMM
 - i. Complements other control methods
 - ii. Extends reach into inaccessible areas
 - iii. Targets large areas
 - iv. Surveillance driven
 - v. Precision applications
 - c. Aircraft
 - i. Fixed wing
 - ii. Rotary wing
 - iii. Drones
 - d. Control methods
 - i. Adulticiding
 - 1. High- or low-pressure systems
 - 2. ULV spraying
 - ii. Larviciding
 - 1. Liquid open area
 - 2. Granular heavy vegetation
 - 3. Wide area larviciding (WALS)
 - a. Fly low over houses
 - b. Requires special permissions
 - e. Spray systems

- i. Started with home-built systems
- ii. Modified and improved
- iii. Have to take into account the aircraft's capabilities
- f. Spray nozzles
 - i. Rotary atomizers electric and air driven
 - ii. Fan nozzles generally used with high pressure systems
- g. Other equipment
 - i. GPS
 - ii. Spray computer
 - 1. Spray modeling
 - 2. Weather
 - 3. Flow controllers
- h. Factor affecting efficacy
 - i. Release height
 - ii. Offset
 - iii. Chemical
 - iv. Terrain/landscape
 - v. Droplet size
- i. Drift
 - i. Needed
 - ii. Must be managed
 - iii. Minimize deposition
 - iv. How droplets move
 - 1. Aircraft wake effects
 - 2. General atmospheric conditions
 - 3. Sedimentation energy

16 Oct 25

- A. Developing Mosquito-Based Detection Methods for Invasive Brown Tree Snakes in Guam
 - Larry Reeves
 - a. Fauna
 - i. Coconut crabs
 - ii. Geckos
 - iii. Skinks
 - iv. Monitor lizard
 - v. Fruit bats

- vi. Rail
 - 1. Extinct in the wild in the 1980s
 - 2. Reintroduced
- vii. Kingfisher
 - 1. Extinct in wild since 1986
 - 2. Not reintroduced
- viii. Other extinct bird species
- b. Reason for extinctions
 - i. Early 1950s, brown tree snake (mildly venomous colubrid) introduced
 - ii. Island-wide by 1968
 - iii. Extreme densities
- c. Effort to remove/prevent spread of tree snakes
 - i. Traps
 - ii. Exclusion fences
 - iii. Poison bait
 - 1. Stations
 - 2. Bait dropped by helicopter
 - iv. Trained sniffer dogs
 - v. Teams of biologists
- d. Detecting brown tree snakes in new locations
 - i. Environmental DNA
 - ii. Mosquito blood meals
 - 1. Xenosurveillance
 - a. Host species
 - b. Pathogens
 - 2. Host presence
- e. Project
 - i. Collect resting blood fed mosquitoes
 - ii. Preserve blood meal on a Whatman DNA card
 - iii. Extract DNA
 - iv. Blood meal analysis
 - 1. Serological
 - 2. PCR, etc
 - 3. Nex-gen approaches
 - v. DNA barcoding
- f. Goal develop a mosquito blood meal-based method for detecting brown tree snakes
 - i. Need to identify reptile-feeding mosquitoes

- ii. Develop morphological ID keys
- iii. Native mosquito species 7
 - 1. Aedes
 - 2. Culex
- iv. Many introduced species
 - 1. 16 established
 - 2. 5 detected but eliminated
 - 3. Reeves and Rudnick, 1951
- v. Collected
 - 1. 14 species
 - 2. 12 species had blood meals (221 blood meals)
 - 3. 174 blood meals identified
- vi. Results
 - 1. 4 species fed on reptiles
 - a. Aedes guamensis appears to be a reptile specialist
 - b. Aedes oakleyi fed on geckos and is likely a reptile specialist
 - c. Culex marianae fed on birds and reptiles
 - 2. Many other mosquitoes fed primarily on domestic animals
- B. In2Care, a Newer Approach in Mosquito Control Kris Hamby (NA)
 - a. What is in2care?
 - i. Mosquito control station
 - ii. Designed for large scale areas
 - iii. Focus on container breeding Aedes spp and Culex spp
 - iv. Can be used with other mosquito control treatments
 - v. Uses egg-laying female to disperse IGR to cryptic breeding sites
 - 1. Larvicide pyriproxyfen
 - 2. Adulticide Beauveria bassiana (fungus)
 - b. Traps should be serviced every 4-6 weeks
 - c. Refill sachets have a shelf life and is temperature sensitive
 - d. Case studies
 - i. 10 stations per acre recommended
 - 1. Can be used to treat hot spots
 - 2. Number of stations can vary according to area use
 - ii. Reduced dengue transmission in areas that could not be sprayed
 - iii. Positive results in areas with insecticide-resistant mosquitoes
- C. From Surveillance to Suppression: Glynn County's Integrated WNV Response Strategy –Samuel Harrod
 - a. Prior to 2014 the county had its own program through Public Works

- b. VDCI is a contractor
 - i. Adulticide
 - 1. Truck
 - 2. Aerial
 - ii. Larvicide
 - iii. Surveillance
- c. 2025
 - i. 5 WNV+ pools
 - ii. 4 sites
 - iii. Response
 - 1. Increased surveillance
 - 2. Targeted larval control
 - 3. Adulticiding with alternating chemicals
 - 4. Population monitoring
 - iv. Control proved to be very effective
 - v. Now for the messy part
 - 1. New public works director
 - 2. New communications director
 - 3. Public Works posted info on social media
 - 4. Generated lots of angry calls from the public and lots of service requests
 - 5. GDA reached out to attend the aerial mission
 - vi. Response
 - 1. Educational outreach
 - 2. Strengthen community awareness and preparedness
 - Created a good working relationship with the new Public Works Director
 - 4. Showed off for GDA in a good way
- D. Kissing Bugs at UGA: Georgia and Beyond Kevin Vogel
 - a. Background
 - i. Kills 12,000+ people annually
 - ii. Treatment only effective in the early acute stages of the diseases
 - iii. May be dormant for 15-20 years
 - iv. Primarily a disease of Central and South America
 - v. Vector
 - 1. Triatome kissing beds
 - a. ~150 species worldwide
 - b. Almost all in the Americas

- 2. Exclusively hematophagous
- 3. Only ~30 species are significant vectors
- 4. US locations
 - a. Dog kennels
 - b. Chicken houses
 - c. Wood piles
- b. Kissing bugs in the US
 - i. Sylvatic reservoirs 30-50% of bugs in US carry T cruzi
 - ii. Some peridomestic species with evidence of feeding on humans
 - 1. 2 native Georgia species
 - 2. Triatoma sanguisuga is most commonly
 - 50% of raccoons and possums are infected and can transmit vertically to their offspring
 - iv. Emerging Infectious Diseases, 3(9). Chagas Disease, an Endemic Disease in the US
 - v. Transmission routes
 - 1. Fecal
 - 2. Blood meal
 - 3. Vertical
 - 4. Predation
 - vi. Issues
 - 1. Do tests detect chagas strains in US
 - 2. Sylvatic species vs peridomestic species
 - 3. Most of the sylvatic transmission occurs via predation
- c. Lab studies
 - Obligate & exclusively hematophagous invertebrates require bacterial symbiotes
 - ii. Environmentally acquired
 - iii. Without the bacteria, the bugs do not develop
 - iv. Without symbiont, bugs are sensitive to infection
 - 1. Symbiont protects the bug from other bacteria
 - 2. Bugs produce more immune cells
- E. South Health District's Mosquito Surveillance Program Austin Haney & Blake Lowery
 - a. Health district
 - i. 221 employees
 - ii. EH staff
 - b. GIA grant
 - i. \$300,000 for 2 years (2018-2020)

- ii. Personnel
 - 1. 9 trapping full-time
 - 2. Manager
 - 3. 1 floater/logistics coordinator
- iii. Initially contracted with VSU for ID and testing
- iv. Trapped 9 district counties
 - 1. 2 nights a week
 - 2. 2 different locations per county
 - 3. Used gravid & light taps
- v. Started from scratch
- c. New funding
 - i. \$150,000 per year for 2 years
 - ii. Couldn't afford VSU
 - iii. Trained EH staff to ID mosquitoes
 - iv. Used Vector Test for testing
 - v. Starting using only gravid traps
- d. Got an additional funding cut to \$60,000
 - i. Cut down to one night a week
 - ii. Collected mosquitoes in all 10 counties in District
- e. Mosquito ID
 - i. In-person training by State
 - ii. Trained 4 people
 - iii. Tested mosquitoes using Vector Test WSE-K05
 - iv. Tested Culex spp.
- f. Data are submitted to State
- g. Current state
 - i. Funding is non-existent at the moment
 - ii. Dated equipment needs repaired or replaced
 - iii. However, since the program is entirely internal, it can be started up with limited problems
- F. Mosquito IPM in a Zoo Environment Dan Killingsworth
 - a. Role of tech services is to optimize the treatment plan and deal with issues as they arise
 - b. IPM
 - i. Science-based sustainable decision-making process
 - ii. Started in agricultural chemical use
 - iii. Requires monitoring and adaptation
 - c. IP3M takes into account the human element

- d. Any environment can be a sensitive site
- e. The zoo challenge
 - i. WNV issue in flamingos
 - ii. Developed a collaborative plan
 - 1. Surveillance
 - 2. Source reduction
 - 3. Educate staff
 - iii. Zoos host diverse wildlife in a highly sensitive environment
 - iv. Other pests
 - 1. Flies
 - 2. Ants
 - 3. Rodents
 - v. Non-chemical strategies (build into workflow)
 - 1. Sanitation
 - 2. Exclusion
 - 3. Mechanical control
 - 4. Cultural practices
 - vi. Track mosquito issues using QR Code
 - vii. Training how to inspect and report
 - viii. Using in2care traps
 - ix. Chemical strategies
 - 1. Coordinate response
 - 2. Avoid very sensitive areas
 - 3. Use signs for information
 - x. Take home message
 - 1. Coordinate
 - 2. Communicate
- G. INDUSTRY SPOTLIGHT
 - a. Central Life Sciences Mike Riles
 - i. Distribution partners
 - 1. Veseris
 - 2. Target Specialty Products
 - 3. Clarke Fourstar
 - ii. Products
 - 1. Altosid many formulations
 - 2. Fourstar bacterial product (Bs/Bti) 3 formulations
 - iii. Zenivex (etophenprox) Adulticide 3 formulations
 - iv. Drones (Leading Edge)

- 1. Mapvision
- 2. Precision Vision
- 3. Drop Vision
- 4. Droplet software
- b. Veseris Scott Artman

H. POSTER SESSIONS

- a. Toxicological Effects of Nano- and Microplastics on Aedes albopictus
- b. Engaging Undergraduate Researchers in Mosquito Surveillance Activities

BANQUET – TALK ON MOSQUITOES BY LARRY REEVES

17 Oct 25

- a. Introduction of the New Entomology Department Head: Approaching Mosquito Control with Caution for Butterflies and Non-Target Insects Sonia Altizer
 - a. Studied moth and bee behavior in spreading mold to flowers
 - b. Studied monarch butterfly protozoan
 - c. Started at UGA in the Odum School of Ecology looking at disease ecology
 - i. Community Science Project Project Monarch Health
 - ii. 20-year study
 - iii. North American
 - iv. 90,000+ samples
 - v. People have changed the habitat to promote year-round breeding in the southern US leading to disease hotspots and loss of migration
 - d. Focus on shaping future and creating partnerships
 - e. Entomology Department
 - i. 75 years of excellence
 - ii. Expertise in medical entomology, urban entomology, and vector science
 - iii. Extension and Outreach
 - The field of entomology is changing
 - f. How can UGA partner with GMCA to meet community needs?
 - g. Butterflies and pesticides
 - Butterflies and native bees are declining across the US
 - ii. Pyrethroids implicated
 - iii. Other pesticides implicated include

- a) Neonicitionoids
- b) Organophosphate
- c) Other broad-spectrum products
- iv. Need to avoid spraying critical areas
- h. Minimizing risks while protecting the health of people, animals, and food systems
- B. Mosquito Service and Trends in the Structural Pest World Billy Blasingame
 - a. Been in pest control for 50 years; family in pest control for 75 years
 - b. Commercial applicators got involved in mosquito control due to WNV
 - i. County funding decreased so counties did less control
 - ii. Opened a gap that commercial applicators filled
 - c. Need to continue learning and changing
 - d. Need to get commercial applicators involved
 - e. Horace Olan "H. O." Lund: The founder and former head of the University of Georgia's (UGA) Department of Entomology is a prominent figure in the field of entomology in Georgia.
 - i. While his primary work with the university's department was prior to the 1980s, his work laid the groundwork for the pest control industry in the state.
 - ii. He was celebrated in the Congressional Record in November 1983 for his contributions to the field of entomology in Georgia.
 - iii. University of Georgia (UGA) Department of Entomology:
 - a. Under Lund's legacy, UGA continued to be a hub for pesticide and pest management research in the 1980s.
 - b. The department is known for publishing the Georgia Pest Management Handbook, which contains pesticide and pest control recommendations.
 - f. Need better training and regulation for mosquito control
 - i. CAT 41 license started in the 2010
 (https://www.gamosquito.org/resources/2012Meeting/Olsen.pdf)
 - ii. Needs to be more stringent for both commercial and municipal applicators
- C. Development of a Reverse Transcriptase Polymerase Chain Reaction (RT-PCR) Assay for Detecting the Infective Stage of *Dirofilaria immitis* in Mosquitoes Eric Chambers (VSU)
 - a. Diagnostic tool
 - b. Heartworm is a huge veterinary issue
 - i. Primarily in dogs
 - ii. Cats can have issues
 - iii. Infect a number of other animals as well, including humans

- c. Incidence keeps increasing in spite of availability of prophylaxis
- d. At least 60 mosquito vectors in a number of genera
- e. Determining presence of filarial worms in mosquito
 - i. Dissection tedious and slow
 - ii. PCR detects parasites but not if mosquito is able to transmit the parasite
 - iii. Solution develop a tool to detect only the L3 (infective) stage using RT-PCR
- f. This approach has been used to develop assays for human filarial parasites
- g. Used a bioinformatics approach
 - i. Identified spline junction points
 - ii. Need a primer to span an intron-exon junction, which will prevent amplification of any mosquito DNA and genomic DNA
 - iii. Designed primers that only amplified L3 DNA and found one that worked
- h. Time-course study done
 - i. Tested against 2, 5-, 10-, 11-, and 14-days post blood meal
 - ii. Need primer to only work at 14-day post blood meal
- i. Can get cross reactivity to human filaria
- j. Still need to determine sensitivity and sequence the PCR products
- k. Next step field screen product
- I. Working to make VSU the biotechnology and genomics hub in South Georgia
- D. Pesticide Regulations and Inspections Nicholas Sumner
 - a. All non-structural applications
 - b. Laws
 - i. FIFRA 1947
 - a. Administered by EPA
 - b. The label is the law
 - ii. Georgia
- a. Pesticide control act 1976
- b. Regulates RUPs
- c. EPA and the Endangered Species Act
 - i. Court required EPA to come into compliance
 - ii. Must work with other agencies
 - iii. Final insecticides strategy released April 29, 2025
 - iv. Look for label language changes
 - v. https://www.epa.gov/endangered-species/bulletins-live-two-view-bulletins

- d. Product Updates
 - i. Malathion
 - a. Final review decision pending
 - b. Special use for bed bugs in poultry houses
 - ii. Methomyl
 - a. Fly control
 - b. Reclassified as restricted use
- e. Certification and training rules changes
 - i. Federal rule revisions
 - ii. Training for non-licensed applicators
- f. Pesticide contractors
 - i. Commercial 995
 - ii. CAT 41 1466
 - iii. CAT 31 51
- g. Record keeping more is better
 - i. GA Rule 40-21-5
 - ii. Date & time
 - iii. Applicator
 - iv. Location & size of area
 - v. Pesticide used and amount
 - vi. Method of application
 - vii. Weather & wind speed are good info to keep
 - viii. Equipment logs can be helpful
- h. Safety issues
 - i. Storage
 - ii. PPE
 - iii. Label
 - iv. Pesticide put into wrong container
- i. Field watch mapping program
 - i. drift watch
 - ii. Beecheck
 - iii. Fieldcheck
 - iv. Cropcheck
 - v. Seedfieldcheck
- j. Complaint investigation
 - i. Drift
 - ii. Runoff
 - iii. Poisoning

- iv. Baiting
- v. Unlicensed applicator
- vi. Illegal sale/use/storage/disposal etc
- k. Licensed individual is the responsible party
- E. Operational Mosquito Control in DeKalb County Natasha Agramonte
 - a. WNV surveillance program
 - i. Gravid traps
 - ii. Dead birds less of a focus now
 - iii. Source reduction and larviciding
 - b. All insect-related complaints, and rodents
 - c. Focus on community education
 - d. Follow up on complaints
- F. Mosquito Pollination Skyler Nichols
 - a. Background
 - i. Differences in sex and species may affect pollination efficiency
 - ii. Mosquitoes have been found to have distinct responses to floral cues
 - iii. Understanding these pollination patterns could lead to control opportunities
 - b. Study species
 - i. Anopheles, Aedes, and Culex species
 - ii. Several plant types
 - c. Bag flowers to prevent other exposures to pollinators
 - d. Introduce mosquitoes
 - e. Current results
 - i. Females carrying double the number of pollen grains
 - ii. Carry on legs, wings, and body
 - iii. Probably related to body size
 - iv. Different species show differences in amount pollen they carry
 - v. Location of pollen differs between species
 - f. Odor-based assays
 - i. Dual portal
 - a. Flower
 - b. Flower stem
 - ii. Mosquitoes seem to be more attracted to the flower
 - g. Research is ongoing

Business Meeting

- 1. Need to nominate a 3rd and 2nd year directors as Bryan Boone needs to step down.
 - a. Sam Harrod
 - b. Nalany Richardson
 - c. Shelby Toon
- 2. Sustaining member will remain Mike Riles

2025-2026 Board

President – Natasha Agramonte

Vice President – Dan Peach

1st year – Mindy Kruty-Crothers

2nd year – Sam Harrod

3rd year – Shelby Toon

Secretary/Treasurer - Misty McKanna

GA Cooperative Extension Rep – Elmer Gray

GA Public Health Rep – Rosmarie Kelly

Planning & Negotiations – Tiffany Nguyen

Sustaining Member – Mike Riles

Past President – Caroline Efstathion